Ce site est en cours de construction.
Pour plus d'informations vous pouvez consulter les sites de nos anciens laboratoires :
Site du LIF - Site du LSIS


LIS UMR CNRS 7020

LIS UMR 7020

Le LIS Laboratoire d’Informatique et Systèmes est une nouvelle structure issue de la fusion de deux UMR : le Laboratoire d’Informatique Fondamentale de Marseille (LIF) UMR 7279 et le Laboratoire des Sciences de l’Information et des Systèmes (LSIS) UMR 7296. C’est une Unité Mixte de Recherche (UMR) sous tutelles du Centre National de la Recherche Scientifique (CNRS) rattachée à l’Institut des sciences de l'information et de leurs interactions (INS2I), de l’Université d’Aix-Marseille (AMU) et de l’Université de Toulon (UTLN).

Prochains évènements

Retour à l'agenda
15 November 2018

Séminaire CaNa : 15 novembre à 10h : Adiabatic methods in quantum control, CHITTARO Francesca

Résumé : Quantum control is the branch of control theory concerned with quantum systems, that is, dynamical systems at atomic scales, that evolve according to the laws of quantum mechanics. One fundamental issue in quantum control theory is the controllability of quantum systems, that is, whether is it possible to drive a quantum system to a desired state, by means of suitably designed control fields. To cover most theoretical and practical situations, several notion of controllability have been proposed, as, for instance, controllability in the evolution operator, pure state controllability, controllability in population and eigenstate controllability. After a brief introduction on the topic, I will expose some results on the approximate spread controllability of (closed) quantum systems, obtained by means of adiabatic techniques, and taking advantage of the presence of conical intersections between the energy eigenstates. These results have been published in [1],[2]. Adiabatic techniques can be successfully used also to study the dynamics of open quantum systems. In particular, in [3] they have been applied to find an effective description of the evolution of open, weakly coupled quantum systems, where the sub-system of interest dissipate with much slower time scales than the rest of the system. [1] U. Boscain, F. C. Chittaro, P. Mason, M. Sigalotti Quantum Control via Adiabatic Theory and intersection of eigenvalues IEEE-TAC, (2012) 57, No. 8, 1970--1983 [2] F. C. Chittaro, P. Mason Approximate controllability via adiabatic techniques for the three-inputs controlled Schrödinger equation, SIAM J. Control Optim., (2017), 55(6), 4202–4226. [3]

Tutelles