CANA : CAlcul NAturel

Mots clés

Systèmes dynamiques discrets (non-)déterministes, probabiliste ou quantiques. Réseaux d’interaction : réseaux d’automates, automates cellulaires, piles de sable. Inspirations de et applications à la biologie et la physique

 

Responsable

Sylvain SENÉ

 

Membres permanents

ARRIGHI PabloProfesseur des Universités
Courriel : pablo.arrighi@lis-lab.fr
Page personnelle : https://pageperso.lis-lab.fr/pablo.arrighi/
DI MOLFETTA GiuseppeMaitre de Conférences
Courriel : giuseppe.dimolfetta@lis-lab.fr
Page personnelle : https://pageperso.lis-lab.fr/giuseppe.dimolfetta/
PERROT KévinMaitre de Conférences
Courriel : kevin.perrot@lis-lab.fr
Telephone : 0486090497
Page personnelle : https://pageperso.lis-lab.fr/kevin.perrot/
PORRECA Antonio EnricoMaitre de Conférences
Courriel : antonio.porreca@lis-lab.fr
SENÉ SylvainProfesseur des Universités
Courriel : sylvain.sene@lis-lab.fr
Telephone : 0486090678
Page personnelle : https://pageperso.lis-lab.fr/sylvain.sene/
SIEGEL PierreProfesseur des Universités
Courriel : pierre.siegel@lis-lab.fr
Telephone : 0486090679
Page personnelle : https://pageperso.lis-lab.fr/pierre.siegel/

 

Doctorants

BRIDOUX FlorianDoctorant
Courriel : florian.bridoux@lis-lab.fr
Telephone : 0486090484
Page personnelle : https://pageperso.lis-lab.fr/florian.bridoux/
DURBEC NicolasDoctorant
Courriel : nicolas.durbec@lis-lab.fr
MARQUEZ MARTIN IvanDoctorant
Courriel : ivan.marquez@lis-lab.fr
PERROTIN PacômeDoctorant
Courriel : pacome.perrotin@lis-lab.fr
VILCHIS MEDINA José LuisDoctorant
Courriel : joseluis.vilchismedina@lis-lab.fr
Page personnelle : https://pageperso.lis-lab.fr/joseluis.vilchismedina/

 

Autres membres

FACCHINI StefanoPost-Doctorant
Courriel : stefano.facchini@lis-lab.fr
Telephone : 0486090479
Page personnelle : https://pageperso.lis-lab.fr/stefano.facchini/

 

Objectif scientifique

Le calcul naturel est un domaine de l’informatique fondé sur les liens que cette science entretient avec d’autres disciplines, en particulier la physique et la biologie. D’une part, il vise à abstraire des phénomènes naturels pour développer de nouveaux paradigmes de calcul et poursuivre l’analyse de modèles de calcul existants. D’autre part, il propose d’utiliser ces modèles pour mieux comprendre ces phénomènes et tâcher de dégager certaines des lois fondamentales qui semblent gouverner le monde qui est le notre.

L’équipe CANA (CAlcul NAturel) vise, en particulier, à mieux capturer les paradigmes de base de la biologie et de la physique théoriques, au travers d’approches issues de l’informatique fondamentale et des mathématiques discrètes. Ces approches et les méthodes qui leur sont associées, que nous développons également per se, reposent sur l’étude des interactions entre entités. Le plus souvent, les entités que nous étudions n’ont qu’un nombre fini d’états possibles, et interagissent localement sur le réseau où elles sont disposées, en pas de temps discret. Avec leur séduisante simplicité, ces modèles discrets permettent de capturer l’essence de la dynamique d’un grand nombre de systèmes naturels et donc d’en offrir une meilleure compréhension. À titre d’exemple, ces modèles permettent de représenter qualitativement, de par leur niveau d’abstraction élevé, des réseaux de régulation biologique, la propagation de particules en physique quantique ou encore l’émergence de vagues dans les tas de sable. Au delà de leur intérêt sur ces aspects de modélisation, ces modèles peuvent naturellement être étudiés et analysés en tant que tels, que ce soit pour leurs propriétés intrinsèques de dynamique, de complexité ou encore de calculabilité.

Définir des modèles discrets inspirés de phénomènes naturels, démontrer formellement leur pertinence, comprendre les comportements complexes qu’ils engendrent au moyen de résultats mathématiques rigoureux et s’en servir pour mieux comprendre les systèmes réels qui nous entourent : ces préoccupations sont celles qui animent les membres de l’équipe CANA, qui considèrent ainsi les modèles à la fois pour leur pouvoir représentationnel et pour leur capacité calculatoire.

Selon les besoins des recherches menées, les modèles étudiés possèdent des particularités qui peuvent être d’ordre statique (syntaxique) ou dynamique (sémantique) : architecture des réseaux régulière ou non, déterminisme ou non des règles locales de transition des entités qui peuvent alors être probabilistes ou encore revêtir un caractère quantique, synchronisme ou asynchronisme de l’évolution des entités…

Quant aux méthodes qui se retrouvent au cœur des recherches menées par l’équipe CANA, elles sont majoritairement issues de la théorie des systèmes dynamiques discrets, de la combinatoire, de la théorie de la complexité et de la calculabilité, de la logique non-monotone et de l’information quantique.

 

Site Web

Pour plus de détail : http://cana.lis-lab.fr

 

Publications récentes de l’équipe



20 documents

Article dans une revue

  • Pablo Arrighi, S. Martiel, V. Nesme. Cellular automata over generalized Cayley graphs. Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2018, 18, pp.340-383. ⟨hal-01785458⟩
  • Mathilde Noual, Sylvain Sené. Synchronism versus asynchronism in monotonic Boolean automata networks. Natural Computing, Springer Verlag, 2018, 17 (2), pp.393-402. ⟨hal-01479438⟩
  • Giuseppe Di Molfetta, Diogo O. Soares-Pinto, S\'ılvio M. Duarte Queirós. Elephant quantum walk. Phys. Rev. A, 2018, 97, pp.062112. ⟨10.1103/PhysRevA.97.062112⟩. ⟨hal-02093396⟩
  • Pablo Arrighi, Giuseppe Di Molfetta, Stefano Facchini. Quantum walking in curved spacetime: discrete metric. Quantum, 2018, 2, pp.84. ⟨10.22331/q-2018-08-22-84⟩. ⟨hal-02093395⟩
  • Eurico L. P. Ruivo, Marco Montalva-Medel, Pedro P. B. Oliveira, Kévin Perrot. Characterisation of the elementary cellular automata in terms of their maximum sensitivity to all possible asynchronous updates. Chaos, Solitons & Fractals, 2018, 113, pp.209--220. ⟨10.1016/j.chaos.2018.06.004⟩. ⟨hal-02093397⟩
  • Enrico Formenti, Kévin Perrot, Eric Rémila. Computational complexity of the avalanche problem for one dimensional decreasing sandpiles. Journal of Cellular Automata, Old City Publishing, 2018, 13 (3), pp. 215-228. ⟨halshs-01417248⟩
  • Jacques Demongeot, Sylvain Sené. Phase transitions in stochastic non-linear threshold Boolean automata networks on Z²: the boundary impact. Advances in Applied Mathematics, Elsevier, 2018, 98, pp.77--99. ⟨hal-01785459⟩
  • X. Li, L. Lachmanski, S. Safi, S. Sene, C. Serre, et al.. New insights into the degradation mechanism of metal-organic frameworks drug carriers. Scientific Reports, Nature Publishing Group, 2017, 7 (1), ⟨10.1038/s41598-017-13323-1⟩. ⟨hal-01868346⟩

Communication dans un congrès

  • José Luis Vilchis Medina, Pierre Siegel, Vincent Risch, Andrei Doncescu. Intelligent and Adaptive System based on a Non-monotonic Logic for an Autonomous Motor-glider. 15th International Conference on Control, Automation, Robotics and Vision (ICARCV 2018), Nov 2018, Singapore, Singapore. pp.442--447, ⟨10.1109/ICARCV.2018.8581107⟩. ⟨hal-02093392⟩
  • Pierre Siegel, Andrei Doncescu, Vincent Risch, Sylvain Sené. Towards a Boolean dynamical system representation in a nonmonotonic modal logic. International Workshop on Non-Monotonic Reasoning (NMR'18), Oct 2018, Tempe, United States. pp.53--62. ⟨hal-02093398⟩
  • Pablo Arrighi, Giuseppe Molfetta, Nathanaël Eon. A Gauge-Invariant Reversible Cellular Automaton. 24th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2018, Ghent, Belgium. pp.1-12, ⟨10.1007/978-3-319-92675-9_1⟩. ⟨hal-01824869⟩
  • Viet-Ha Nguyen, Kévin Perrot. Any Shape Can Ultimately Cross Information on Two-Dimensional Abelian Sandpile Models. 24th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2018, Ghent, Belgium. pp.127-142, ⟨10.1007/978-3-319-92675-9_10⟩. ⟨hal-01824872⟩
  • Kévin Perrot, Cédric Berenger, Peter Niebert. Balanced Connected Partitioning of Unweighted Grid Graphs. Proceedings of MFCS'2018, 2018, Liverpool, United Kingdom. pp.39:1--39:18, ⟨10.4230/LIPIcs.MFCS.2018.39⟩. ⟨hal-02093978⟩
  • P. Arrighi, C. Chouteau, S. Facchini, S. Martiel. Causal dynamics of discrete manifolds. Proceedings of NCMA'2018, 2018, Kosice, Slovakia. ⟨hal-02093393⟩
  • Kévin Perrot, Pacôme Perrotin, Sylvain Sené. A framework for (de)composing with Boolean automata networks. International Conference on Machines, Computations, and Universality (MCU'2018), 2018, Fontainebleau, France. ⟨hal-01654221v2⟩
  • G. Ruz, E. Goles, S. Sené. Reconstruction of Boolean regulatory models of flower development through an evolution strategy. Proceedings of CEC'18, 2018, Unknown, Unknown Region. ⟨hal-01785460⟩
  • Tarek Khaled, Belaid Benhamou, Pierre Siegel. A New Method for Computing Stable Models in Logic Programming. IEEE 30th International Conference on Tools with Artificial Intelligence, ICTAI'2018, 2018, Protland, United States. pp.800--807, ⟨10.1109/ICTAI.2018.00125⟩. ⟨hal-02093399⟩
  • Alberto Leporati, Luca Manzoni, Giancarlo Mauri, Antonio E. Porreca, Claudio Zandron. A Turing machine simulation by P systems without charges. Proceedings of ACMC'2018, 2018, Auckland, New Zealand. pp.213--221. ⟨hal-02093391⟩
  • Tarek Khaled, Belaid Benhamou, Pierre Siegel. Vers une nouvelle méthode de calcul de modèles stables et extensions en programmation logique. Actes des Quatorzièmes Journées Francophones de Programmation par Contraintes (JFPC'2018), 2018, Amiens, France. pp.63-72. ⟨hal-02093400⟩

Pré-publication, Document de travail

  • Kévin Perrot, Marco Montalva-Medel, Pedro de Oliveira, Eurico Ruivo. Maximum sensitivity to update schedules of elementary cellular automata over periodic configurations. 2019. ⟨hal-02179732⟩